Anil Kag

Ph.D. Candidate Data Science & Machine Learning Lab Boston University 8 St. Mary's St Boston, MA (02215) ☐ +1 (857) 498 9294 ☑ anilkag@bu.edu ❤ https://anilkagak2.github.io/

Education

2018–2023 Ph.D. in Electrical & Computer Engineering, Boston University, 3.96/4.0
2018–2022 M.S. in Electrical & Computer Engineering, Boston University, 3.96/4.0
2010–2014 B.Tech. in Computer Science, Indian Institute of Technology, Guwahati, 9.20/10

Research Interests

Efficient Neural Architectures, Computer Vision, Resource Constrained Learning, & Large Scale Optimization

Work Experience

- 2020 Research Intern, Microsoft Research, Redmond
- 2016–2018 Research Fellow, Microsoft Research, Bangalore
- 2014–2016 Software Engineer, Dynamics CRM, Microsoft, Bangalore
 - 2013 Software Engineer Intern, Bing, Microsoft, Hyderabad

Publications

Pre-Print	Spatially Interpolated Inverted Residual Block
	A. Kag, G. Wadhwa, V. Saligrama, P. Jain
ICLR'23	Scaffolding a Student to Instill Knowledge
	A. Kag, D. A. E. Acar, A. Gangrade, V. Saligrama
ICLR'23	Efficient Edge Inference by Selective Query
	A. Kag, I. Fedorov, A. Gangrade, P. Whatmough, V. Saligrama
ICML'22	Achieving High TinyML Accuracy through Selective Cloud Interactions, (spotlight)
DyNN	A. Kag, I. Fedorov, A. Gangrade, P. Whatmough, V. Saligrama
CVPR'22	Condensing CNNs with Partial Differential Equations
	A. Kag, V. Saligrama
NeurIPS'21	Online Selective Classification with Limited Feedback
	A. Gangrade, A. Kag , A. Cutkosky, V. Saligrama
ICML'21	Training Recurrent Neural Networks via Forward Propagation Through Time

- ICML'21 Training Recurrent Neural Networks via Forward Propagation Through Time A. Kag, V. Saligrama
- CVPR'21 Time-Adaptive RNN: A Dynamical Systems View A. Kag, V. Saligrama
- AISTATS'21 Learning With Abstention via One-Sided Classification A. Gangrade, A. Kag, V. Saligrama
 - ICLR'20 RNNs Incrementally Evolving on an Equilibrium Manifold: A Panacea for Vanishing and Exploding Gradients?

A. Kag, Z. Zhang, V. Saligrama

- NSDI'19 BLAS-on-flash: An Efficient Alternative for Large Scale ML Training and Inference? S. J. Subramanya, H. V. Simhadri, S. Garg, A. Kag, V. Balasubramanian
- NeurIPS'18 Learning Compact Networks via Adaptive Network Regularization
- CDNNRIA S. Sankarapandian, A. Kag, R. Manzelli, B. Kulis

WSDM'18 SwiftXML: Extreme Multi-label Learning with Label Features for Warm-start Tagging, Ranking & Recommendation

Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, M. Varma

WWW'18 Parabel: Partitioned Label Trees for Extreme Classification with Application to Dynamic Search Advertising

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, M. Varma

Academic Service

Reviewer

Conference NeurIPS, ICML, ICLR, CVPR, AAAI, COLT, ICASSP

Journal TMLR, IEEE Neural Networks and Learning Systems

Skill Set

Programming	C, C++, C#, Java, Python, Bash	Databases	MySQL	
ML Toolkits	PyTorch, Tensorflow, Scikit-Learn	Tools	Matlab, LATEX, (Git, Visual Studio
Some of my projects are hosted at https://github.com/anilkagak2				

Talks

- October 2022 Achieving High TinyML Accuracy through Selective Cloud Interactions BU AIR Seminar, Boston
 - July 2022 Achieving High TinyML Accuracy through Selective Cloud Interactions DyNN Workshop, ICML, Baltimore
- March 2022 Achieving High TinyML Accuracy through Selective Cloud Interactions ARM Research, Boston
- August 2020 Tiny ML models for Phish Detection Microsoft S+C & Microsoft Research, Redmond

Academic Achievements

- o Rafik Hariri Graduate Student Fellowship, Rafik B. Hariri Institute, Boston University
- o Research Travel Award, ECE Department, Boston University
- o Dean's Ph.D. Fellowship, ECE Department, Boston University
- $_{\odot}$ Among Top 10% reviewers in NeurIPS 2020
- o Ranked 4 out of 80 students in the Batch of 2014, Computer Science, IIT Guwahati
- o Recipient of "Merit-cum-Means" scholarship provided by IITG in 1st & 2nd Year
- o Secured 1761 Rank in IIT-JEE, 2010 out of 450,000 students who appeared for the test

Major Projects

Fall 2019	Online Non-Convex Learning			
Advisor	Dr. Francesco Orabona, Assistant Professor, BU			
	Literature survey of the non-convex losses in the online learning setting. Also analyzed the follow-the-regularized-			
	leader algorithm for a sub-class of non-convex functions satisfying Polyak condition.			
Summer 2019	Tiny ML models for Phish Detection			
Advisor	Dr. Prateek Jain, Sr. Principal Researcher, MSR India			
	Developed Tiny ML models with low complexity and competitive performance to the SmartScreen models for Phish			
	webpage detection. These models are very lightweight and can be easily deployed for mobile inference via the			
	Tensorflow-lite framework enabling privacy-aware inference.			
Spring 2019	Survey on first order methods for Deep Learning			
Advisor	Dr. Francesco Orabona, Assistant Professor, BU			
	Literature survey on the first order methods such as SGD, Adagrad, RmsProp, Adam, Nadam.			
2017–2018	Improving Bing Dynamic Search Ads (DSA) Recommendations			
Advisor	Dr. Manik Varma, Senior Researcher, MSR India			
	Improving Bing DSA recommendations using Extreme Classification. Given an Ad landing page without any bid			
	keywords, we were asked to predict potentially monetizable queries which can bring clicks. This resulted in 13.6%			
	gain in click-through rate and 13% reduction in bounce rate.			
2016–2017	Improving Bing Text Ads (DSA) Recommendations			
Advisor	Dr. Manik Varma, Senior Researcher, MSR India			
	Improving Bing Text Ads recommendations using Extreme Classification. Given an Ad landing page with bid			
	keywords, we were asked to predict potentially monetizable queries which can bring clicks. This resulted in 5% gain			
	In click-through rate and 11% reduction in bounce rate.			
Summer 2017	The Nature Conservancy Fisheries Monitoring, Kaggle Challenge			

This was an image classification problem, where given an image, we were asked to predict the type of endangered fish if there's one. I ranked among top 5% in the final evaluation.

Key Courses Undertaken

Data Structures Algorithms Computer Architecture Discrete Mathematics Software Engineering Randomized Algorithms Stochastic Processes Parallel Algorithms

Operating Systems Computer Networks Compilers DBMS Distributed Systems

Machine Learning Statistical Learning Learning from Data Reinforcement Learning Online Learning Information Retrieval Information Theory

Formal Language & Automata Theory Theory of Computation Probability Theory & Random Processes Optimization Hierarchical Memory Algorithms Computational Geometry **Real Analysis**