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Novel Neural Architectures & Algorithms for Efficient Inference
Researchers have trained large Deep Neural Networks (DNNs) due to advances in training

algorithms, hardware infrastructure, and neural constructs. For instance, convolutional models
[25] for image classification, transformers [13] for natural language processing, diffusion models
[23] for mixed modalities, etc. Although these models achieve state-of-the-art (SOTA) perfor-
mance, they have enormous storage, computational, and energy requirements. This paradigm of
throwing vast resources for training larger and larger models has the following negative impacts:
• Slow Inference on Commodity Hardware. Without access to GPU/TPU clusters, it

would be impossible to perform fast inference with these models, let alone training.
• Prohibitively Large Model Size. High-capacity DNNs have large model storage requirements.

Thus, they cannot be deployed on resource-constrained devices such as mobile phones.
• High Carbon Footprint. Soaring energy consumption yields high CO2 emissions [14].

I am broadly interested in improving the resource efficiency of neural architectures, i.e.,
significantly reducing the computational and storage requirements of a DNN without any loss in
performance. I have proposed novel architectures and algorithms that allow low-capacity models
to achieve near SOTA performance. Specifically, my research focuses on the following two themes:
• Efficient Low-Complexity Architectures. In this theme, the fundamental problem is

achieving better performance given a resource constraint such as storage or computation.
I tackled this issue in two ways. First, I have designed better-performing recurrent and
convolutional architectures than existing networks using differential equations. Second, I have
proposed training strategies that promote better performance and resource usage trade-off
efficiency, even in the existing architectures.

• Input Hardness Aware Architectures. In the previous theme, a DNN spends its full
computational power for every input without regard to input characteristics. In contrast, a
model aware of the input hardness would spend considerably fewer resources on easy inputs
than difficult ones. I have built a series of architectures that incorporate this notion. First, I
have developed an abstaining classifier that skips prediction on a few uncertain examples. Next,
I have trained hybrid models wherein a low-capacity abstaining network sends the abstained
inputs to a high-capacity network. Finally, I designed a distillation training method wherein a
helper function selectively distills teacher knowledge onto the student only on easy inputs.

Below, I will describe these two research directions, highlighting my previous work. Finally, I
will lay out my future research agenda.

1 Efficient Low Complexity Architectures

Existing DNNs, such as Recurrent Neural Networks (RNNs) [17] and Convolutional Neural
Networks (CNNs) [16], suffer from many issues like poor gradients, low receptive fields, low
signal-to-noise ratio, etc. These instabilities lead to sub-optimal performance. A simple strategy
to achieve better performance at a given resource constraint is to address these instabilities,
leading to improved architectures and training algorithms. Below, I summarize these challenges
posed by RNNs and CNNs and describe my previous work to remedy the same.

• RNNs : Vanishing/Exploding Gradients. During RNN training, the gradient of loss back-
propagated in time could suffer from exponential decay/explosion [21], resulting in poor general-
ization for processes exhibiting long-term dependencies. I have designed Incremental RNN [10], a
continuous time RNN whose transition function is a solution to an ordinary differential equation
(ODE). It tracks the increments in the hidden state space. As a result, the ODE equilibrium
yields identity gradients and eliminates the vanishing and exploding gradients. Further, a simple
few-step Euler discretization efficiently processes long sequences while achieving significantly
better performance than existing architectures with 4× storage and 2× compute reduction.
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• RNNs : Low Signal-to-Noise Ratio. Sequential data such as time-series has a low signal-
to-noise ratio. Thus, improperly designed RNNs such as LSTMs [17] could amplify noise in
the hidden states. I have further improved Incremental RNNs by developing Time Adaptive
RNN [6], where the time-constant of the ODE is learned as a function of the hidden state
and input at any time step. It accounts for the relative importance of the input and acts as
a barrier to invoking the ODE solver. Whenever the time-constant is high, it barely processes
the new input, remaining essentially in the previous hidden state. Alternatively, whenever the
time-constant is low, it reaches equilibrium to focus on the current input. Thus, Time Adaptive
RNN allows identity gradients during training and addresses the noise attenuation problem.
It outperforms the SOTA architectures with 3× storage reduction and 6× compute reduction.

• RNNs : Back-Propagation Training Issues. Back-Propagation Through Time (BPTT)
[22, 27] trains RNN by unrolling it in the time dimension and propagating the error back
in time over the entire sequence length. As a result, it leads to poor trainability due to the
gradient explosion/decay phenomena. In addition, it requires storing all the intermediate
hidden states, resulting in significant memory costs for very long sequences. I have developed
Forward-Propagation Through Time (FPTT) [7], where at each time step, we update RNN
parameters by optimizing an instantaneous risk function. This proposed risk is a regulariza-
tion penalty that evolves dynamically based on previously observed losses. It converges to a
stationary solution of the empirical RNN objective. Empirically FPTT outperforms BPTT
on several well-known benchmark tasks with up to 10% increase in accuracy on sequential
decision-making tasks and up to 10 points increase in perplexity scores for sequential language
modeling. Thus, FPTT enables architectures like LSTMs to learn long-range dependencies.

• CNNs : Low Receptive Fields. CNNs require greater depth to generate high-level features,
resulting in computationally expensive models. Convolutional operators are local and restricted
in the receptive field, which increases with an increase in depth. I have explored partial differen-
tial equations (PDEs) that offer a global receptive field without the added overhead of maintain-
ing large kernel convolutional filters. I have proposed a new feature layer, called the Global layer
[8], that enforces PDE constraints on the feature maps, resulting in rich features. This layer can
be embedded in a deep CNN to generate a shallower network. Thus, creating compact and com-
putationally efficient architectures, achieving similar performance as the original network. Empir-
ical evaluation on the CIFAR and Imagenet datasets demonstrates that architectures with global
layers require 2− 5x less computational and storage budget without any loss in performance.

• CNNs : Exploiting Spatial Interpolation. Residual blocks are the backbones of many
CNNs such as MobileNets[18] and EfficientNets[24]. I have proposed a novel interpolation
scheme [9] to reduce the computational cost of any generic residual block. It decomposes the
output of the block as an interpolation between features processed at a low-resolution sampling
of the input features and cheaper features processed at the input resolution. We use this
interpolation scheme to create Spatially Interpolated Inverted Residual block and train the
interpolated variants of the MobileNetV3 and EfficientNet models. Evaluation on the Imagenet
dataset show up to 40% savings in compute without any loss in performance.

2 Input Hardness Aware Architectures

We can further bridge the gap between very low and very high complexity models by leveraging
input hardness, namely the notion that not all input instances are equally hard to predict for a
DNN. For example, very clean and centered images with brightly lit backgrounds, well-aligned with
the training distribution, should be easily handled by low-capacity CNNs. Further, a high-capacity
network should only execute a significantly less time for correct prediction. In contrast, the
model should spend more resources on hard images such as uneven lighting or drastic distribution
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shift. Below, I have summarized my previous work, various novel architectures, and algorithms
that leverage the input hardness to improve the performance and resource-usage trade-off.

• Abstaining Classifier. Selective Classification (SC) [15, 20] enables a DNN to make a
prediction only when the network is confident. It allows the model to abstain from a prediction
on uncertain inputs. Traditional SC methods use post-hoc strategies, such as entropy threshold
on the predictive distribution, to create abstaining classifiers from standard DNNs. I have
integrated the abstention mechanism within the DNN training by learning a collection of
class-wise decoupled one-sided empirical risks. It finds the largest decision sets for each class
with few false positives. This One-Sided Prediction (OSP)[2, 1] based relaxation yields an SC
scheme that attains a near-optimal trade-off between abstention and accuracy. On CIFAR, OSP
achieves 98% accuracy by predicting on 81% inputs, a 6% increase in coverage over best method.

• Hybrid Models. An abstaining classifier can be further specialized into a hybrid model[4,
5]. In this meta-architecture, a low-capacity base model handles easy examples and abstains
from difficult ones. These inputs are routed to a specialized high-capacity global model. This
hybrid design achieves SOTA accuracy and significantly outperforms the existing efficient
low-complexity models. It is flexible enough to be deployed in different hybrid setups. For
instance, edge-cloud setup (base on the edge and global on the cloud) or the same hardware as
long as the high-capacity model can run on this hardware. This setup achieves cloud accuracy on
micro-controllers with 25% latency reduction and on mobile phones with 70% latency reduction.

• Distilling Selective Knowledge. Further, I have leveraged this notion of input hardness
in improving Knowledge Distillation (KD), a procedure widely used to distill information from
a high-capacity teacher into a low-capacity student. It blindly asks the student to follow the
teacher’s softened probability distribution. Instead, when the student’s capacity is much lower
than the teacher’s, it should follow the teacher only on the inputs realizable by the student
function class. Informally, not all inputs are equally difficult for the student to learn, and
it would benefit by focusing its capacity on the easier region. My improved KD procedure,
Distilling Selective Knowledge (DiSK)[3], during training, introduced a guide function g(x) that
serves as a signal if the teacher perceives the input x as easy or difficult for the student, i.e.,

– if g(x) ≈ 1, teacher discounts the input x in the student training.
– if g(x) ≈ 0, teacher signals the input x as learnable by student.

DiSK yields large gains over vanilla KD. It produces significantly smaller complexity students
with near-teacher accuracy (e.g. 8× compute reduction with ∼ 2% accuracy loss on CIFAR-100).

3 Future Research Directions

Before discussing future research work, let us compare GPT-3, a SOTA DNN, and the human
brain. [19] notes that GPT-3 has twice the number of neurons compared to the human brain, yet,
it can only solve language processing tasks compared to the myriad tasks performed by the human
brain (audio, video, language, sentiment, creativity, etc.). In addition, training this network alone
requires 50× more energy than that consumed by an average human over the whole lifespan.
Thus, current SOTA DNNs are inefficient, unspecialized, and underperforming compared to
the human brain. It should put in perspective how far behind the field is in the efficiency and
specialization of the DNNs. My future research directions aim directly at improving this efficiency
and specialization viewpoint. Below, I have listed some concrete ideas that tackle this issue.

• Efficient Transformers. Transformers[26] have emerged as a one-stop solution for many
learning tasks in language, vision, and speech domains. They evolved from their simple siblings
like RNNs, and do not inherit long-range dependency learning issues. But, this improvement
comes with a set of challenges: (a) large model size and inference complexity as it requires
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access to dependency calculation that scales quadratically in sequence length, and (b) long
training times and high working memory. My work on low-complexity RNNs can be extended
to generate efficient transformers with significantly less resource consumption. In addition, the
FPTT algorithm for RNNs can be modified to reduce transformer training time. Similarly, input
hardness can be incorporated into the transformer architectures by adaptively invoking a low-
capacity transformer for easy inputs and routing to a high-capacity transformer for hard inputs.

• Context Aware DNNs. Traditional DNNs rely on a single feature generation pipeline
that focuses on the input and outputs the predictions. In addition to the input, the human
brain relies on tangential observations to infer the context, speeding up the inference and
predictive performance. DNNs should follow a similar strategy for the low-complexity and input
hardness-aware architectures. Side information should help improve the DNN generalization.
In the visual or textual domain, a context can be as simple as the prominent feature locations,
objects, or actor information. It will enable a DNN to parse useful features before delving into
the details or effectively censoring unnecessary information. I believe some logic that efficiently
infers contextual information will benefit any neural architecture.

• Enforcing Constraints During Training. Recent works have proposed various characteristic
quantities to qualify the generalization properties of a minimum of the DNN loss surface. These
include Lipschitz smoothness, surface width, predictive entropy, discount on hard-to-learn data
points, etc. In the literature, these metrics are used post-hoc to measure the generalization error.
Instead, these quantities should be treated as constraints to be enforced systemically during train-
ing. My work on selective distillation (DiSK) proposes a simple primal-dual scheme that enforces
and relaxes the constraint during training. It promotes the DNN to learn simpler hypotheses at
the beginning of the training, and towards the end, it learns harder data points such that these
are consistent with the most promising simple hypothesis. Thus, I believe constraints associated
with better generalization properties should be enforced during training to yield efficient DNNs.

• Concoction of Specialized Low-Capacity DNNs. Input hardness-aware architectures
can be extended to include many specialized low-capacity models that coordinate with a few
high-capacity networks. This integration yields fast inference where a low-capacity model
specializes in a part of the input space or a different modality. For further refinement, send
low-confidence predictions to other specialized or high-capacity models. This meta-architecture
can be seen as a pseudo-brain interface where different expert models (with varying degrees of
capacity) handle specialized functions. It promotes resource usage reduction by sharing latent
space for low-capacity models, from which they specialize into their respective functions. These
specialized functions and shared latent space allow easy interplay between various modalities
such as vision, language, speech, and sensory. It is in stark contrast to the mixture of experts
paradigm where either all the experts share the same capacity structure or their integration
is post-hoc and does not incorporate the input hardness as I have discussed earlier.

• Applications. I envision deploying my research to applications serving a large user base. As a
Research Fellow at Microsoft Research, I deployed our Extreme Classification work [12, 11] in the
Bing Ads recommendation engine, yielding significant improvements in click-through rates. This
experience, alongside my graduate research work, gives me a unique perspective on application-
driven research. For instance, in many mobile applications, such as Android/iOS Camera,
Alexa/Google Assistant, Oculus, etc., we can deploy abstaining and hybrid models. In this
setup, the low-capacity abstaining model resides on the edge device and infers as many queries as
it can confidently. Once the edge model decides the uncertainty about user input, it can provide
the user with its low-confident prediction and an option for the user to consent to the cloud
model in case the user wants high-quality predictions. Similarly, the proposed low-complexity
architectures improve computational and storage requirements for all resource constraints.
Thus, they can be easily scaled and deployed in existing machine learning applications.
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